perm filename LISPAX.PPR[F83,JMC] blob
sn#732487 filedate 1983-11-17 generic text, type T, neo UTF8
the proof LISPAX:
1. (DECL CAR (UNARYNAME: CAR) (TYPE: |GROUND→GROUND|) (SYNTYPE: CONSTANT)
(BINDINGPOWER: 950))
2. (DECL CDR (UNARYNAME: CDR) (TYPE: |GROUND→GROUND|) (SYNTYPE: CONSTANT)
(BINDINGPOWER: 950))
3. (DECL ATOM (UNARYNAME: ATOM) (TYPE: |GROUND→TRUTHVAL|) (SYNTYPE: CONSTANT)
(BINDINGPOWER: 750))
4. (DECL NULL (UNARYNAME: NULL) (TYPE: |GROUND→TRUTHVAL|) (SYNTYPE: CONSTANT)
(BINDINGPOWER: 750))
5. (DECL LISTP (UNARYNAME: LISTP) (TYPE: |GROUND→TRUTHVAL|) (SYNTYPE: CONSTANT)
(BINDINGPOWER: 750))
6. (DECL ALISTP (UNARYNAME: ALISTP) (TYPE: |GROUND→TRUTHVAL|)
(SYNTYPE: CONSTANT) (BINDINGPOWER: 750))
7. (DECL SEXP (UNARYNAME: SEXP) (TYPE: |GROUND→TRUTHVAL|) (SYNTYPE: CONSTANT)
(BINDINGPOWER: 750))
8. (DECL (U V W) (TYPE: |GROUND|) (SORT: |LISTP|))
9. (DECL (X Y Z) (TYPE: |GROUND|) (SORT: |SEXP|))
10. (DECL (XA YA ZA) (TYPE: |GROUND|) (SORT: |ATOM|))
11. (DECL (A B C) (TYPE: |GROUND|))
12. (DECL (PHI) (TYPE: |GROUND→TRUTHVAL|))
13. (DECL CONS (TYPE: |(GROUND⊗GROUND)→GROUND|) (SYNTYPE: CONSTANT)
(INFIXNAME: .) (PREFIXNAME: CONS) (BINDINGPOWER: 850))
;labels: SIMPINFO
14. (AXIOM |∀XA.SEXP XA|)
;labels: SIMPINFO
15. (AXIOM |∀U.SEXP U|)
;labels: SIMPINFO
16. (AXIOM |∀X U.LISTP X.U|)
;labels: SIMPINFO
17. (AXIOM |∀U.¬NULL U⊃LISTP CDR U|)
;labels: SIMPINFO
18. (AXIOM |∀U.¬NULL U⊃SEXP CAR U|)
;labels: SIMPINFO
19. (AXIOM |∀X.¬ATOM X⊃SEXP CAR X|)
;labels: SIMPINFO
20. (AXIOM |∀X.¬ATOM X⊃SEXP CDR X|)
;labels: SIMPINFO
21. (AXIOM |∀X Y.SEXP X.Y|)
;labels: SIMPINFO
22. (AXIOM |∀X Y.¬ATOM X.Y|)
;labels: SIMPINFO
23. (AXIOM |∀X U.¬NULL X.U|)
;labels: SIMPINFO
24. (AXIOM |∀U.NULL U⊃U=NIL|)
;labels: SIMPINFO
25. (AXIOM |∀X Y.CAR (X.Y)=X|)
;labels: SIMPINFO
26. (AXIOM |∀X Y.CDR (X.Y)=Y|)
;labels: SIMPINFO
27. (AXIOM |∀U.¬NULL U⊃CAR U.CDR U=U|)
;labels: SIMPINFO
28. (AXIOM |∀X.¬ATOM X⊃CAR X.CDR X=X|)
;labels: LISTINDUCTION
29. (AXIOM |∀PHI.PHI(NIL)∧(∀X U.PHI(U)⊃PHI(X.U))⊃(∀U.PHI(U))|)
30. (DECL PARS (TYPE: |GROUND*|))
31. (DECL (DF DF1 DF2) (TYPE: |(GROUND⊗(GROUND*))→(GROUND*)|))
32. (DECL NILCASE (TYPE: |(GROUND*)→(GROUND*)|))
;labels: LISTINDUCTIONDEF
33. (AXIOM
|∀DF NILCASE DEF.(∃FUN.(∀PARS X U.FUN(NIL,PARS)=NILCASE(PARS)∧
FUN(X.U,PARS)=
DEF(X,U,FUN(U,DF(X,PARS)),PARS)))|)
;labels: SEXPINDUCTION
34. (AXIOM |∀PHI.(∀X.ATOM X⊃PHI(X))∧(∀X Y.PHI(X)∧PHI(Y)⊃PHI(X.Y))⊃(∀X.PHI(X))|)
;labels: SEXPINDUCTIONDEF
35. (AXIOM
|∀ATOMCASE DEFSEXP DF1 DF2.(∃FUN.(∀PARS X Y.(ATOM X⊃
FUN(X,PARS)=
ATOMCASE(X,PARS))∧
FUN(X.Y,PARS)=
DEFSEXP(X,Y,
FUN(X,DF1(X,PARS)),
FUN(Y,DF2(X,PARS)),
PARS)))|)
36. (DECL LIST (TYPE: |(GROUND*)→GROUND|) (SYNTYPE: CONSTANT))
37. (DECL LST (TYPE: |GROUND*|))
;labels: SIMPINFO
38. (AXIOM |LIST(())=NIL|)
;labels: SIMPINFO
39. (AXIOM |∀LST.LISTP LIST(LST)|)
;labels: SIMPINFO LISTDEF
40. (AXIOM |∀X LST.LIST(X,LST)=X.LIST(LST)|)
41. (DECL APPEND (TYPE: |(GROUND⊗GROUND⊗(GROUND*))→GROUND|) (SYNTYPE: CONSTANT)
(ASSOCIATIVITY: BOTH) (INFIXNAME: *) (BINDINGPOWER: 840))
;labels: SIMPINFO APPENDEF
42. (DEFAX APPEND |∀X U V.NIL*V=V∧X.U*V=X.(U*V)|)
;labels: SIMPINFO LISTAPPEND
43. (AXIOM |∀U V.LISTP U*V|)
;labels: SIMPINFO
44. (AXIOM |∀U.U*NIL=U|)
;labels: SIMPINFO
45. (AXIOM |∀X V.X.NIL*V=X.V|)
46. (DECL (ALLP SOMEP) (SYNTYPE: CONSTANT) (TYPE: |((@PHI)⊗GROUND)→TRUTHVAL|))
;labels: ALLPDEF
47. (DEFAX ALLP
|∀PHI X U.ALLP(PHI,NIL)∧
ALLP(PHI,X.U)=(IF PHI(X) THEN ALLP(PHI,U) ELSE FALSE)|)
;labels: SOMEPDEF
48. (DEFAX SOMEP
|∀PHI X U.¬SOMEP(PHI,NIL)∧
SOMEP(PHI,X.U)=(IF PHI(X) THEN TRUE ELSE SOMEP(PHI,U))|)
;labels: MAPCARDEF
49. (DEFAX MAPCAR
|∀FN X U.MAPCAR(FN,NIL)=NIL∧MAPCAR(FN,X.U)=FN(X).MAPCAR(FN,U)|)
50. (DECL (ALIST A0 A1 A2) (TYPE: |GROUND|) (SORT: |ALISTP|))
;labels: SIMPINFO
51. (AXIOM |∀ALIST.LISTP ALIST|)
52. (AXIOM |∀ALIST.¬NULL ALIST⊃¬ATOM CAR ALIST∧ATOM CAR (CAR ALIST)|)
;labels: MKALIST
53. (AXIOM |∀XA Y ALIST.ALISTP (XA.Y).ALIST|)
54. (DECL ASSOC (TYPE: |(GROUND⊗GROUND)→GROUND|) (SYNTYPE: CONSTANT))
;labels: ASSOCDEF
55. (DEFAX ASSOC
|∀X XA Y ALIST.ASSOC(X,NIL)=NIL∧
ASSOC(X,(XA.Y).ALIST)=
(IF X=XA THEN XA.Y ELSE ASSOC(X,ALIST))|)
;labels: SIMPINFO
56. (AXIOM |∀X ALIST.SEXP ASSOC(X,ALIST)|)
57. (DECL MEMBER (TYPE: |(GROUND⊗GROUND)→TRUTHVAL|) (SYNTYPE: CONSTANT))
;labels: MEMBERDEF
58. (DEFAX MEMBER |∀X Y U.¬MEMBER(X,NIL)∧MEMBER(X,Y.U)=(X=Y∨MEMBER(X,U))|)
59. (DECL SUBST (TYPE: |(GROUND⊗GROUND⊗GROUND)→GROUND|) (SYNTYPE: CONSTANT))
;labels: SUBSTDEF
60. (DEFAX SUBST
|∀X Y Z Z1 Z2.(ATOM Z⊃SUBST(X,Y,Z)=(IF Z=Y THEN X ELSE Z))∧
SUBST(X,Y,Z1.Z2)=SUBST(X,Y,Z1).SUBST(X,Y,Z2)|)
;labels: SIMPINFO
61. (UE ((PHI.|λZ.SEXP SUBST(X,Y,Z)|)) SEXPINDUCTION (OPEN SUBST))
∀X3.SEXP SUBST(X,Y,X3)
62. (UE ((PHI.|λZ.SUBST(X,Y,SUBST(X,Y,Z))=SUBST(SUBST(X,Y,X),Y,Z)|))
SEXPINDUCTION (OPEN SUBST))
∀X4.SUBST(X,Y,SUBST(X,Y,X4))=SUBST(SUBST(X,Y,X),Y,X4)